- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000000000001
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Acosta, Francisco (1)
-
Conwell, Colin (1)
-
Klindt, David (1)
-
Miolane, Nina (1)
-
Sanborn, Sophia (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
A fundamental principle of neural representation is to minimize wiring length by spatially organizing neurons according to the frequency of their communication [Sterling and Laughlin, 2015]. A consequence is that nearby regions of the brain tend to represent similar content. This has been explored in the context of the visual cortex in recent works [Doshi and Konkle, 2023, Tong et al., 2023]. Here, we use the notion of cortical distance as a baseline to ground, evaluate, and interpret measures of representational distance. We compare several popular methods—both second-order methods (Representational Similarity Analysis, Centered Kernel Alignment) and first-order methods (Shape Metrics)—and calculate how well the representational distance reflects 2D anatomical distance along the visual cortex (the anatomical stress score). We evaluate these metrics on a large-scale fMRI dataset of human ventral visual cortex [Allen et al., 2022b], and observe that the 3 types of Shape Metrics produce representational-anatomical stress scores with the smallest variance across subjects, (Z score = -1.5), which suggests that first-order representational scores quantify the relationship between representational and cortical geometry in a way that is more invariant across different subjects. Our work establishes a criterion with which to compare methods for quantifying representational similarity with implications for studying the anatomical organization of high-level ventral visual cortex.more » « less
An official website of the United States government

Full Text Available